
The Deep Computing Messaging Framework: Generalized
Scalable Message Passing on the Blue Gene/P

Supercomputer

Sameer Kumar
sameerk@us.ibm.com

Gabor Dozsa
gdozsa@us.ibm.com

Gheorghe Almasi
gheorghe@us.ibm.com

Dong Chen
chendong@us.ibm.com

Mark E. Giampapa
giampapa@us.ibm.com

Philip Heidelberger
philiph@us.ibm.com

IBM T.J. Watson Research Center
Yorktown Heights, NY 10598, USA

Michael Blocksome
blocksom@us.ibm.com

Ahmad Faraj
faraja@us.ibm.com

Jeff Parker
jjparker@us.ibm.com

Joseph Ratterman
jratt@us.ibm.com

Brian Smith
smithbr@us.ibm.com

Charles Archer
archerc@us.ibm.com

IBM Systems and Technology Group
Rochester, MN, 55901

ABSTRACT
We present the architecture of the Deep Computing Mes-
saging Framework (DCMF), a message passing runtime de-
signed for the Blue Gene/P machine and other HPC archi-
tectures. DCMF has been designed to easily support sev-
eral programming paradigms such as the Message Passing
Interface (MPI), Aggregate Remote Memory Copy Interface
(ARMCI), Charm++, and others. This support is made
possible as DCMF provides an application programming in-
terface (API) with active messages and non-blocking col-
lectives. DCMF is open source software that has a layered
component based architecture with multiple levels of ab-
straction, allowing the members of the community to con-
tribute new components to its design at the various layers.
The DCMF runtime can be extended to other architectures
through the development of architecture specific implemen-
tations of interface classes. The production DCMF runtime
on Blue Gene/P takes advantage of the direct memory ac-
cess (DMA) hardware to offload message passing work and
achieve good overlap of computation and communication.
We take advantage of the fact that the Blue Gene/P node is
a symmetric multi-processor with four cache-coherent cores
and use multi-threading to optimize the performance on the
collective network. We also present a performance evalua-
tion of the DCMF runtime on Blue Gene/P and show that
it delivers performance close to hardware limits.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’08, June 7–12, 2008, Island of Kos, Aegean Sea, Greece.
Copyright 2008 ACM 978-1-60558-158-3/08/06 ...$5.00.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures

General Terms
Design, Languages, Measurement, Performance

Keywords
Parallel computing, Message passing, Application Program-
mer Interface, MPI, Blue Gene, Collective Communication,
Active Messages, Sockets, ARMCI, Charm++

1. INTRODUCTION
The Blue Gene/L [2] (BG/L) machine is a low-power

highly scalable supercomputer that has achieved nearly 480
TF on the LINPACK benchmark [7]. Blue Gene/P [10]
(BG/P) is the successor to Blue Gene/L and can scale to
over 3 PF of peak performance. Both Blue Gene machines
have low-frequency embedded cores and multiple network
devices for application message processing.

In this paper, we present the architecture of the Deep
Computing Messaging Framework (DCMF). This framework
is the product message passing runtime on BG/P. The main
contributions of this framework are:

• a minimalist application programming interface (API)
with active messages, one-sided operations, non-blocking
collectives and explicit support for distributed memory
consistency and ordering requirements

• a generalized messaging stack that supports many pro-
gramming paradigms and contexts simultaneously,

• features that enable low-latency, high throughput API
calls for architectures with low-frequency cores and
multiple network devices,

• high performance message passing on BG/P.

The DCMF runtime is a generalization of the message
layer [3] stack on BG/L that was initially designed to sup-
port the Message Passing Interface (MPI) [8]. The message-
layer stack was extended to support the Aggregate Remote
Memory Copy Interface (ARMCI) [15] and Global Arrays.
Since then, there have been research explorations to study
programming paradigms such as Charm++ [13] and Unified
Parallel C [5] on the BG/L machine. This has motivated the
design of a new application programming interface (API)
to support different programming paradigms. The DCMF
API is architecture independent and provides a minimal-
ist set of message passing services, which include a point-
to-point message send, non-blocking one-sided get and put
operations, and an optional set of non-blocking collective
calls. To support different programming paradigms such as
Global Arrays, Charm++, and MPI, only a portability layer
(e.g., the ADI in MPICH [17, 9] and the machine layer in
Charm++) needs to be developed on top of the DCMF API.

A key feature of the DCMF API is the support for active
messages (similar to LAPI [4] and Charm++/Converse [12,
11]), where the header packet carries the identifier of the
handler function to be executed on the arrival of the header
packet. This is different from a send-receive model where an
explicit receive has to be posted for each send. However, in
this work, we show that send-receive programming models
can be developed with good performance on top of the active
message model.

Programming paradigms often have different semantics
for the various operations they support. For example, in
ARMCI some operations can be synchronous (blocking) and
require all succeeding operations to wait for that operation
to finish. The DCMF architecture supports different con-
sistency levels for these different messaging semantics. In
addition, the different consistency levels can also enable dif-
ferent ordering schemes for the messages; for instance, since
the Charm++ runtime does not require message ordering,
it can take advantage of the relaxed consistency model al-
lowing the DCMF runtime to send and receive messages out
of order.

The Global Arrays runtime can issue both ARMCI and
MPI calls resulting in different message handlers being in-
voked on the destination processors. This has motivated
support for multiple programming contexts to co-exist at
the same time in DCMF. This feature is more general than
queues in the ELAN API [16] and queue-pairs in Infiniband
VERBS [1]. The multiple contexts can enable ARMCI, MPI
and even DCMF calls to be made in the application and be
processed by the framework independent of each other.

An important feature of the DCMF design is support-
ing architectures with multiple network devices that have
different interfaces. On BG/P, for example, there are three
network devices: DMA, collective network, and global inter-
rupt network. The DCMF runtime provides device classes to
handle each network device independently and support any
new network devices. This design facilitates porting DCMF
to another architecture.

Similar approaches to DCMF have been used in the VERBS
API for Infiniband [1], ELAN for Quadrics [16], Myrinet
Express [14] and LAPI [4] in IBM SP architectures. Our
approach differs from these as it has a unique set of fea-
tures which include active messages, multiple programming
contexts and consistency levels for messages. Moreover our

stack is designed and optimized for architectures of low fre-
quency cores and multiple network devices with different
interfaces.

The BG/P DCMF runtime has been open-sourced [6] to
allow users to program at any of its layers and explore a
variety of message passing optimizations. The next sections
detail the different levels of the DCMF stack and their im-
plementations on BG/P.

2. DCMF ARCHITECTURE
We begin with a brief discussion on the DCMF application

programmer interface (API).

2.1 DCMF API
The hierarchical structure of the DCMF runtime is pre-

sented in Figure 1. The majority of applications are ex-
pected to use MPI or other common middlewares supported
by the stack (e.g. ARMCI or Converse/Charm++). The
DCMF stack builds upon and co-exists with Lower Level
Network APIs. Note that, for example, applications can si-
multaneously use MPI, ARMCI or Charm++, DCMF API
and low-level network APIs to minimize overheads in latency
critical regions.

The DCMF API serves as the primary interface for higher
level messaging systems (or custom applications). This API
defines a minimal set of functions to initialize, query, con-
figure and utilize the communication hardware.

To ensure message progress, the DCMF API defines four
possible thread levels that coincide with their MPI equiv-
alents. Mutual exclusion is ensured for all critical sections
within DCMF when the configuration requires it. The run-
time system can also be configured to enable interrupts on
packet arrival and have a dedicated lightweight communica-
tion thread make progress on messaging. Current MPICH
implementation on Blue Gene/P takes advantage of inter-
rupt support to be fully compliant with the MPI progress
semantics.

The DCMF API exposes three basic types of message-
passing operations: two-sided point-to-point send (DCMF
Send), one-sided put (DCMF Put) and get (DCMF Get),
and multi-send. All three have non-blocking semantics to
facilitate overlapping of computation and communication.
The user is notified of completion of communication events
through callback functions.

Figure 2 illustrates the messaging context and active mes-
sage concepts of the DCMF API. It is summarized as follows.

Multiple messaging contexts: To prepare a message
transfer, the processes create messaging contexts. For two-
sided communication, the context is created via the DCMF
Send register() call . This call takes the reception callback

(the cb recv in Figure 2) as an argument and associates it
with a new context stored in the opaque persistent protocol
object. The context can then be used for initiating subse-
quent send operations. Multiple contexts can co-exist and
be used simultaneously in the same application.

Active message model: Two-sided send operations can
be initiated through the DCMF Send call (see Figure 2),
which takes the context and the message info argument. The
latter can deliver meta-data information along with the pay-
load to enable message matching at the receiver side. When
the receiver is processing the first packet of the message,
the DCMF runtime invokes the reception callback associ-
ated with the context and passes it the meta-data (the info

Figure 1: Overview of the DCMF Messaging Stack

Figure 2: Active message DCMF API for two-sided communication

argument) and the size of the message as parameters. The
callback must return a buffer where the incoming message
needs to be stored.

Multisend protocol: DCMF provides a novel multisend
protocol. In a multisend, many point-to-point messages to
different destinations can be sent through a single operation,
thus amortizing the software startup overheads. This call
is of high importance for low frequency core architectures.
Multisend also enables network hardware specific optimiza-
tions for groups of messages (e.g., depositing packets along
straight lines on the torus network). DCMF provides two
flavors of the multisend protocol: multicast and many-to-
many. Many-to-many allows different messages to be sent
to different processes through a single API call. Multicast
is a special case of many-to-many where the same message
is delivered to all target processes.

Collective protocols: The API defines function proto-
types for optimized non-blocking collective operations in-
cluding broadcast, reduce/allreduce, barrier and all-to-all,
most of which are implemented via multisend.

2.2 Internal Components of DCMF
DCMF has a component based design with four abstract

base components (manifested as C++ classes): device, pro-
tocol, sysdep and messager as shown in Figure 3.

An abstract device component manages hardware and soft-
ware resources associated with a corresponding network de-
vice. The abstract device layer in DCMF is important to
support architectures which have several different commu-
nication networks. It also aids porting the system across
various architectures. We have explored a DCMF design
on the BG/L hardware where torus is accessed directly (i.e.
there is no DMA hardware). When we moved to BG/P, we
added a new abstract device class to handle DMA resources.

The messager object encapsulates devices used by a par-
ticular manifestation of DCMF. Each DCMF implementa-
tion can have its own messager implementation that man-
ages only those devices which exist on the particular archi-
tecture. The messager initializes the devices and provides
a unified advance method for the higher layers to ensure
message progress.

Portability of DCMF is enhanced by the sysdep compo-
nent, which provides an abstract interface for all kernel de-
pendent services. These services include thread-management,
intra-node synchronization, personality information lookup
(e.g., local rank and global torus mapping), etc.

Figure 3: Overview of DCMF Basic Components

Messaging algorithms (like eager or rendezvous two-sided
send) are implemented as protocol classes. The base pro-
tocol class provides the generic registration framework for
managing multiple messaging contexts. A protocol object
typically creates a few device dependent and interrelated
message objects, and then posts them in the proper sequence
to the appropriate device queues. Devices signal the pro-
tocol object through callbacks when posted messages com-
plete. These callbacks may trigger creation and posting of
more messages until the required data transfers have been
completed.

The abstract device and protocol layers facilitate building
protocol classes that use more than one device to imple-
ment complex messaging algorithms. The component based
design of DMCF results in high extendability: novel algo-
rithms and optimizations can easily be explored by adding
new protocol objects on top of existing device and message
classes.

A fully functional generic DCMF runtime is available via
the sockets device, socket send protocol, and the PutOver-
Send and GetOverSend protocols. These components imple-
ment the core functionality of the DCMF runtime and pro-
vide a base for porting DCMF to other platforms. A new
DCMF runtime implementation optimized to a particular
network architecture simply needs to implement a network
device and send protocol. The GetOverSend and PutOver-
Send protocols implement the DCMF Get and DCMF Put
APIs through the DCMF Send interface. This allows the
implementor to optimize a new DCMF runtime implemen-
tation in stages without dropping functionality during the
bringup process. The GetOverSend and PutOverSend are
intended to ease portability to new architectures and not
provide optimal performance for any specific platform.

The sockets version of the DCMF runtime allows portabil-
ity to generic platforms such as Linux, Mac OS X, Z/OS, or
other architectures. The reason to port to the sockets plat-
form is twofold. The first is that it is a test environment for
the DCMF developers to build and test protocols and algo-
rithms in a portable, low cost, highly available environment.
Second, users of the DCMF API who do not have ready ac-
cess to Blue Gene hardware can test their application code
on a non-Blue Gene environment such as workstation Linux.

The sockets version of the code currently only scales to a
small number (32 process ranks) of nodes, but it can be used
as a proof of concept for the portability of the platform and
to test the APIs. The result is that we have an rDMA imple-
mentation over sockets, as well as the traditional send/recv
model with active messages, that will work on virtually any
workstation environment.

This ”DCMF over sockets” API currently has been tested
and passes all the MPICH test suite, using the same DCMF
code as the Blue Gene version, so it can be used as an under-
lying transport for MPI applications. While the Blue Gene
version of DCMF uses the compute node kernel and it’s fa-
cilities for process management, the sockets version uses a
portable process manager interface based on the MPICH
PMI interface. This allows for portable and scalable job
launch in a cluster environment. In addition, the sockets
version works in a 64 bit environment as a test vehicle as we
port DCMF to 64-bit architectures.

3. DCMF ON BLUE GENE/P
In this section, we discuss the DCMF implementation on

BG/P, starting with a brief overview of the BG/P hardware.
Then we focus on the device and protocol components.

3.1 BG/P Hardware Architecture
The Blue Gene/P node has four 850 MHz embedded Pow-

erPC 450 cores on a single ASIC and can achieve a peak
floating point throughput of 13.6 GF/node. The software
stack supports three modes: symmetric multi-processing mode
(or SMP mode) with one process and up to four threads,
dual mode with two processes, each with up to two threads
and quad mode (also known as virtual node mode, or VN
mode) with four processes. Similar to BG/L, BG/P nodes
are connected with three networks that the application may
use: a 3D torus network that is deadlock-free and provides
reliable delivery of packets, a collective network which im-
plements global broadcast and global integer arithmetic op-
erations, and a global interrupt network for fast barrier syn-
chronizations.

On the 3D torus, packets are routed on an individual basis
with either deterministic or adaptive routing. With deter-
ministic routing, all packets between a pair of nodes follow
the same path along x,y,z dimensions in that order. With
adaptive routing, each packet can choose a different min-
imalist path based on the load on the torus router ports.
The raw throughput of each link is 425 MB/s, while the
achievable throughput is about 374MB/s due to hardware
and software header overheads [10]. The BG/P architecture
also adds a Direct Memory Access (DMA) engine to facili-
tate injecting packets to the network and receiving packets
from the torus network. This allows the cores to offload
packet management and enables better overlap of commu-
nication and computation. The DMA is also used for local
intra-node memory copies.

The collective network provides reliable delivery at a raw
throughput of 850 MB/s, while the achievable peak through-

put is about 824 MB/s [10]. On BG/P, the collective net-
work cannot be accessed through the DMA engine. So, the
cores must handle packet management. This was a design
choice for BG/P mainly based on complexity, resources, and
verification requirements for enabling the DMA for the col-
lective network. In addition, the collective network operates
on the global communicator (MPI COMM WORLD) and,
collective calls are all blocking operations in the current MPI
standard. This suggested that there was little to be gained
from DMA access to the collective network.

The major constructs in the DMA are injection and recep-
tion memory FIFOs (first-in, first-out buffers), injection and
reception byte counters, and message descriptors. There are
32 Injection FIFOs, eight reception FIFOs, 64 injection and
64 reception counters per DMA group, and four groups per
node.

There are three message types: memory FIFO, direct-put,
and remote-get. For a memory FIFO message, the packets
(including torus headers) are placed in a reception FIFO
on the destination node. For a direct-put, the payloads of
the packets are deposited directly into an arbitrary memory
buffer whose physical address is known to the source. For
a remote-get, the payload of the message is one or more
message descriptors that are placed into an injection FIFO
on the destination node to be eventually processed by the
DMA. For example, the payload descriptor could be a direct-
put of a long message back to the source node.

Each message must have an injection counter, and all
direct-put messages also have a reception counter. The
counters keep track of the number of bytes of the message
sent or received. The DMA decrements counters when pack-
ets are injected or received. To test for message completion,
software can poll a counter to see if it has reached an ap-
propriate value (usually 0) or the DMA can be programmed
to trigger an interrupt when a counter hits zero. Addition-
ally, software can examine the DMA head pointer to see if
a message has been completely injected. This feature can
enable several thousands of messages to be in flight at the
same time (see Section 3.2.1).

3.2 DMA Device: Managing DMA Resources
The software device layer in the DCMF stack manages the

hardware resources and presents message passing primitives
to the higher layers. This device uses the DMA System Pro-
gramming Interface (SPI) [10] calls to allocate and manage
resources in the DMA hardware. It has components for the
different functionalities of the DMA hardware. It is event-
driven with callbacks registered for each DMA event. The
components InjFifoGroup and RecFifoGroup use SPI calls
to program and manage DMA hardware injection and re-
ception FIFOs. The InjFifoGroup defines a push method to
inject descriptors in the DMA. The RecFifoGroup uses an
SPI routine to poll the DMA reception FIFOs for packets.
The poll routine calls the registered handlers for the packets
in reception FIFOs.

The CounterGroup initializes counters and maintains a
list of free and in-use counters. For each hardware DMA
counter there is a software counter-client associated with
it. When the counter hits zero, a callback is called in the
counter-client. The DMA device categorizes counters as
shared or exclusive. A shared counter can have several
clients that are notified when the counter hits zero, while
an exclusive counter can have only one counter-client.

As counters are a limited resource, sharing counters can
allow a very large number of messages to be sent.

The DMA software provides message classes, which are
the basic building blocks for high-level protocols. These
message classes create descriptors and call the InjFifoGroup
object to inject them on the DMA. Some of these message
classes are :

1. SendMessage injects a memory FIFO descriptor with a
shared injection counter, tracks completion by observ-
ing the DMA head and calls a callback on completion.
If the injection FIFO is full, it buffers all input param-
eters and retries when the FIFO has space.

2. PutMessage injects a direct put descriptor with a shared
injection and a shared reception counter. It tracks
completion on the source by observing the DMA head
and then calls a callback when the data has been fully
injected on the network. If the injection FIFO is full,
it buffers all input parameters and retries when the
FIFO has space.

3. GetMessage provides a basic remote-get functionality
by injecting a remote-get descriptor with a direct-put
descriptor as the payload. It uses an exclusive recep-
tion counter on the source node, and a shared injection
counter on the source and destination nodes. When re-
sources such as a reception counter and space in the
injection FIFO are unavailable, input parameters are
buffered, and the remote-get is re-initiated when the
resources become available.

4. MulticastMessage is more general than the send as it
allows the message to be sent to many destinations.
This message allocates an exclusive injection counter
which hits zero when the data is multicast to all des-
tinations.

5. ManyToManyMessage is similar to multicast as data
is sent to several destinations, but different data is
sent to each destination. It also allocates an exclusive
injection counter to track completion of the messages.

The Device master-class constructs all the above men-
tioned objects and provides an advance method that polls
the DMA hardware for event notifications and calls the reg-
istered callbacks. Message objects are posted to the Device
to initiate a message passing operation. The Device queues
up messages when the injection FIFO on the DMA is full.
It also maintains a common shared counter, which is used
by messages that track completion through the progress of
the DMA head pointer. This allows a very large number of
messages to be in flight.

3.2.1 DMA Point-to-point Protocols
The point-to-point protocols instantiate the DMA mes-

sage classes with inputs passed in from the DCMF API and
set up callbacks to be invoked on message completion. Cur-
rently five protocols are implemented: eager, get, put, ren-
dezvous, and multisend.

The Eager protocol instantiates the SendMessage and sends
meta-data and application payload to the destination’s re-
ception memory FIFO. The MPI ordering semantics are en-
sured by the use of deterministic routing and injecting all
descriptors to the same destination on one injection FIFO.

This protocol assumes that the receiver is able to receive the
message. On the receiver, the first packet of the message
results in the application handler being invoked (with the
meta-data as a parameter). This handler allocates a buffer
for the incoming message payload. For a short message,
the application meta-data (see Section 2) and the payload is
copied to the same buffer and only one descriptor is posted
to optimize overheads.

The Get protocol implements the one-sided get interface.
The application will initialize and exchange opaque mem-
ory region objects prior to issuing a one-sided operation.
The memory region object is opaque to the application and
contains platform specific attributes necessary to complete
a one-sided operations. These attributes may index into a
memory segment table to translate virtual to physical ad-
dresses, specify an offset from a base memory region ad-
dress and a length, or other implementation specific at-
tributes such as authentication and protection schemes. The
source and destination memory regions are passed to the
DCMF Get interface with the offsets into the source and
destination memory region and the number of bytes to trans-
fer. The protocol instantiates a GetMessage object to move
the data from the destination processor back to the source
of the get. When the remote-get completes, the reception
counter hits zero and the application completion callback is
invoked. The DMA injection FIFOs can overflow when sev-
eral remote-gets are issued to the same node resulting in an
interrupt. We have implemented an interrupt handler that
allocates a larger injection FIFO to allow the more remote-
get requests to be processed.

The Put protocol implements the one-sided put interface.
Memory regions are required to address the source and des-
tination buffers, as required by the Get protocol. The pro-
tocol instantiates a PutMessage object to move data from
the local processor to the remote processor. Similar to the
send, completion on the source is tracked by observing the
DMA head. The destination DMA uses a shared reception
counter to process all incoming direct-put packets.

The Rendezvous protocol is implemented in the MPICH
ADI with the DCMF Send and DCMF Get API calls. The
sender sends a rendezvous packet to the receiver with the
source buffer, offset and size of the message. Message order-
ing between eager and rendezvous messages is preserved be-
tween the send-receive pair by using the DCMF Send API.
The receiver then initiates a remote-get operation. If a re-
ceive has not been posted for the message, the ADI can delay
the DCMF Get until the receive is posted and a buffer is al-
located for the message. On completion of the remote-get,
the receiver sends an acknowledgment back to the sender.
Other programming paradigms can have similar rendezvous
implementations. We are also exploring a rendezvous pro-
tocol at the DCMF level. Even with rendezvous messages
that use exclusive reception counters, in the first phase sev-
eral rendezvous headers can be sent out. As reception coun-
ters become available, the remote-get calls are issued and
completed in the DMA units without the sender CPU’s par-
ticipation.

The two flavors of Multisend, namely Multicast and Many-
to-many instantiate the DMA Device MulticastMessage and
ManyToManyMessage classes respectively. When the mes-
sage completes, the application completion callback is called
on the source. The receiver processes the message similar to
the eager point-to-point message. The multisend multicast

also provides the ability to multicast data along a line of a
torus using the deposit-bit feature of the torus router.

The protocols presented above are MPI progress compli-
ant. In the eager protocol, the data is moved on the net-
work to the receiver’s reception memory FIFO as soon as it
has been initiated on the sender. To make the rendezvous
protocol progress compliant, we need to enable interrupts
on packet arrival. The interrupt will awaken the communi-
cation thread to initiate the remote-get. We also need to
enable interrupts when reception counters hit zero to make
progress on remote-get requests that have been queued due
to unavailability of counters.

3.3 Collective Device
Similar to BG/L, the collective network on BG/P requires

the processor core to inject and receive packets. However,
the throughput of the collective network has almost dou-
bled, but the clock speed of the core only increased about
20%. This has motivated the exploration of a multi-threaded
design for the collective network software device. The col-
lective network software device supports message classes for
integer allreduce, floating point allreduce, and broadcast.

For short collective calls, only one thread is used and the
collective network blocks for a finite amount of time. If the
collective does not finish in this time-frame, the collective
call returns and is completed in the next advance call. This
optimization reduces the latency of the collective operation
as it avoids polling the other devices such as the DMA and
the global interrupt network. The collective device can sig-
nal a communication thread to accelerate packet processing
on the collective network for large collective operations in
SMP mode.

However, in quad mode (or virtual node mode), intra-node
communication for global collectives has to be executed in
software. We have explored two solutions for global allre-
duce in quad mode, one where the local reduce is performed
over a shared memory segment and another where the DMA
is used to move data within the node. These optimizations
are also examples of protocols that can utilize multiple net-
work devices on BG/P.

3.3.1 Quad Mode Allreduce DMA Optimization
In quad mode, there are four processes (on the four cores)

that have to perform both local computation and packet
processing on the collective network. Figures 4(a) and 4(b)
present two different collective network algorithms in quad
mode for short and long messages.

With short allreduce calls, each core sends its local con-
tribution directly to a designated core (core 0 in the figure)
on each node, where all local data is reduced and then glob-
ally reduced on the collective network. Once the data is
globally reduced, it is broadcast locally by core 0 using the
DMA. The data movement from other cores to core 0 is
overlapped to optimize latency. The local broadcast is an
optimized multisend-multicast call which amortizes software
overheads between message sends to all of the cores.

The large message scheme uses a pipelined load-balanced
ring scheme to do the local reduction. To achieve better
throughput, two cores are used to exclusively inject and re-
ceive packets on the collective network. As in the direct-
reduce scheme, the DMA is used for intra-node communi-
cation between the cores. The local reduction starts with
core 0 sending a fragment of its local contribution to core

(a) Short Optimization: Direct Reduce

(b) Long Optimization: Ring Reduce

Figure 4: Quad Mode Optimization across two net-
works

3 along the logical ring, via cores 1 and 2. At each core
along the ring, the local contribution is reduced with the
incoming message. At core 3 the data is injected onto the
collective network for the global reduction, and the output
of the collective network is received at core 0 and broadcast
to all local cores using a DMA local multicast.

We have explored both DMA memory FIFO and direct-
put messages for these two schemes and the performance
results are presented in Section 4.

3.3.2 Quad Mode Allreduce Shared Memory
Optimization

On BG/P, the channel between the DMA and the L3 cache
is shared for all intra-node communication. As this channel
can become a bottleneck, we explore shared memory opti-
mization. In this scheme, the four MPI tasks perform a local
reduction to a temporary local result buffer that is then in-
jected by a single core onto the collective network device.
The local reduction is accomplished with a pipelined lock-
less circular queue in shared memory. The first core copies
its local source buffer into the pipeline, the second and third
cores will each reduce every pipeline segment with its local
source buffer back into the pipeline, and the fourth core will
reduce each pipeline segment with its local source buffer into
the temporary local result buffer. When the entire local re-
sult buffer is available, a core is dedicated to inject the local
result buffer onto the collective network while a second core
is dedicated to receive the result buffer from the collective
network.

For an allreduce operation, a local broadcast of the result
from the collective network is needed. The core dedicated to

Protocol Latency(µs)
DCMF Eager One-way 1.9
MPI Eager One-way 3.2
MPI Rendezvous One-way 6.5
Converse MPI Driver 8.7
Converse DCMF Driver 4.5
DCMF Put 1.2
DCMF Get 2.0
MPI Get 3.5
ARMCI non-blocking Get 4.7
ARMCI blocking Get 6.4

Table 1: Latency measurements in various program-
ming paradigms in SMP mode

receive the result from the collective network will receive the
result buffer directly into its global result buffer. Once the
entire result buffer is received, the receive core will copy this
buffer into a pipelined lockless circular queue in shared mem-
ory and the other three cores will copy the result into their
individual global result buffers. This constitutes a shared
memory local broadcast of the collective network allreduce
operation.

4. PERFORMANCE RESULTS
We ran several micro-benchmarks to measure the latency

and throughput of the various levels of the software stack.
Table 1 shows the half-round trip time of the ping-pong
benchmark written using DCMF, MPI and Converse APIs
respectively. For short messages, the half round-trip latency
of the Eager protocols is about 1.9µs at the DCMF level and
about 3.2µs at the MPI level. The MPI performance results
are with thread-mode-multiple, where all threads can make
MPI calls at the same time. Overheads in the the MPICH
and MPICH ADI levels of the software stack and acquiring
and releasing locks contribute to the 1.3µs performance dif-
ference. Table 1 also shows the latency of some one-sided
operations at the DCMF, MPI and ARMCI levels. The MPI
and ARMCI layers have higher overheads than DCMF.

 0

 1000

 2000

 3000

 4000

 5000

4K 32K 256K

B
i-D

ire
ct

io
na

l B
an

dw
id

th
 (M

B
/s

)

Message size (bytes)

 Peak per link 748MB/s

 Peak per 6 links 4488MB/s
1 link

2 links
3 links
4 links
5 links
6 links

Figure 5: Throughput of eager protocol for near-
neighbor exchange

 0

 1000

 2000

 3000

 4000

 5000

4K 32K 256K

B
i-D

ire
ct

io
na

l B
an

dw
id

th
 (M

B
/s

)

Message size (bytes)

 Peak per link 748MB/s

 Peak per 6 links 4488MB/s
1 link

2 links
3 links
4 links
5 links
6 links

Figure 6: Throughput of rendezvous protocol for
near-neighbor exchange

In addition, Table 1 presents the latency of the Converse
runtime with an MPI driver and a direct DCMF driver.
The MPI driver in Charm++ makes calls to MPI Iprobe
to poll for incoming messages. When a message has arrived,
a blocking receive is posted to pull the message from the net-
work. However, the DCMF driver takes advantage of active
messages in DCMF to achieve lower overheads.

Figures 5 and 6 show the throughput of near-neighbor
exchange for MPI eager and MPI rendezvous protocols, re-
spectively. In this benchmark, each node sends and receives
a message from up to 6 neighbors. With one neighbor, both
eager and rendezvous protocols achieve close to the peak bi-
directional performance with achieved throughputs of 745
MB/s and 748 MB/s, respectively. While the rendezvous
protocol scales with the number of neighbors, the eager pro-
tocol saturates at 3 links. This is likely due to memory copy
overheads of moving the message payload from the memory
FIFO to the application buffer. In the rendezvous proto-
col, the DMA engine directly moves payload to the applica-
tion buffer resulting in the scalable performance. So, MPI
messages with sizes greater than 1KB use the rendezvous
protocol.

4.1 Overlap of Computation and
Communication

Because of the DMA engine on BG/P, it is possible to get
better overlap of communication and computation than on
BG/L. Therefore applications using the non-blocking point-
to-point calls in the various supported paradigms can get
better performance in regions where overlap is possible.

We define an overlap-ratio as :

(compute time + communication time)/compute time

An overlap-ratio of one indicates the communication time
was completely buried in the computation. An overlap-ratio
greater than one indicates the communication time was not
buried in the computation.

We measured the overlap-ratio on BG/P through MPI
benchmarks. In Figure 7, the sender posts a non-blocking
MPI Isend, enters a compute loop, and then calls MPI Wait
to ensure the send has completed. At the same time, the re-
ceiver blocks on an MPI Recv call. In the plot, the black
regions represent an overlap-ratio close to one, while grey
and white regions have higher overlap ratios. Only small

 1

 3

Send Overlap Ratio Profile, BGP

 1 10 100 1000 10000 100000
Compute Time (us)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

M
es

sa
ge

 S
iz

e
(b

yt
es

)

Figure 7: Send overlap performance (no interrupts)

 1

 3

Recv Overlap Ratio Profile, BGP

 1 10 100 1000 10000 100000
Compute Time (us)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

M
es

sa
ge

 S
iz

e
(b

yt
es

)

Figure 8: Receive overlap performance (no inter-
rupts)

messages overlapping with low compute times show high
overlap-ratios, possibly due to the software overheads of a
short message. Figure 8 shows overlap in a benchmark where
the receiver computes after posting an MPI Irecv and then
calls wait while the sender blocks on an MPI Send. With
short messages the overlap-ratio is possibly higher than one
due to software overheads. With large messages, the ren-
dezvous header is not processed while the core computes,
resulting in a higher overlap-ratio. Figures 9 and 10 show
the overlap-ratio profile with interrupts enabled. Interrupts
improve the receive overlap with rendezvous messages, as
the rendezvous header is processed by the interrupt handler
which issues a remote-get to finish all data movement while
the cores compute.

4.2 Global Allreduce Performance
Figures 11 and 12 show the performance of the integer

sum allreduce operation in SMP mode. The latency for short
messages is about 3.2µs on 32 nodes. Two threads are en-
abled at 4096 integers, and the peak throughput achieved
is about 816MB/s (about 96% of the raw network through-
put).

 1

 3

Send Overlap Ratio Profile, BGP (interrupts)

 1 10 100 1000 10000 100000
Compute Time (us)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

M
es

sa
ge

 S
iz

e
(b

yt
es

)

Figure 9: Send overlap performance with interrupts

 1

 3

Recv Overlap Ratio Profile, BGP (interrupts)

 1 10 100 1000 10000 100000
Compute Time (us)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

M
es

sa
ge

 S
iz

e
(b

yt
es

)

Figure 10: Receive overlap performance with inter-
rupts

The performance of integer sum allreduce in quad mode
(or VN mode) is shown in Figures 13 and 14. The switch
from direct-reduce to ring-reduce (as discussed in Section 3.3)
occurs at 512 integers. The maximum achieved throughput
is 282 MB/s with the DMA direct-put scheme. The through-
put is restricted by the rate at which the PowerPC 450 core
on BG/P can compute a vector integer sum. The shared
memory optimization has better throughput for intermedi-
ate sized messages than memory FIFO DMA, but has lower
throughput than the direct-put version. The shared memory
optimization has higher overheads as data has to be copied
to a shared memory buffer before it is reduced, and then
the final result has to be copied from the shared memory
buffer to the application output buffers. Moreover, as the
shared memory segment size is fixed, the throughput peaks
at about 32K integers.

5. SUMMARY AND FUTURE WORK
We presented the motivation, architecture and BG/P im-

plementation of the Deep Computing Messaging Framework.
We explored a C++ device and protocol interfaces which can
easily support multiple networks with different interfaces.

 4

 16

 64

 256

 1024

 1 8 64 512 4K 32K

La
te

nc
y

(u
s)

Message Size (ints)

Two Threads
One Thread

Figure 11: Latency (µs) of MPI integer sum allre-
duce on 32 nodes in SMP Mode

 200

 400

 600

 800

 1000

 1200

 64 512 4K 32K 256K 2M

B
an

dw
id

th
 M

B
/s

Message Size (ints)

Two Threads
One Thread

Figure 12: Throughput (MB/s) of MPI integer sum
allreduce on 32 nodes in SMP Mode

We presented a non-blocking active messaging API with
multiple contexts and consistency levels, multisend and col-
lective calls to easily support many programming paradigms
on architectures with low-frequency cores. We also pre-
sented preliminary performance results with the ARMCI,
MPI and Charm++ paradigms, that show relatively low
overheads and near peak throughputs for point-to-point mes-
sages, one-sided communication and the allreduce collective
operation. We are exploring a generalized collective frame-
work developed on top of the multisend calls to provide low-
latency high throughput collectives on subsets of processors.

6. ACKNOWLEDGMENTS
We would like to thank Jeremy Berg, Jose G. Castanos,

Bob Cernohous, Thomas Gooding, Douglas Miller, Carl Obert,
Craig Stunkel, and Robert Wisniewski for their support in
the design and development of DCMF on the Blue Gene/P
machine.

The work presented in this paper was funded in part by
the US Government contract No. B554331.

 4

 16

 64

 256

 1024

 1 8 64 512 4K 32K

La
te

nc
y

(u
s)

Message Size (ints)

Shared Memory
DMA Memory Fifo

DMA Direct Put

Figure 13: Latency (µs) of MPI integer sum allre-
duce on 32 nodes in Quad Mode

 50

 100

 150

 200

 250

 300

 64 512 4K 32K 256K 2M

B
an

dw
id

th
 M

B
/s

Message Size (ints)

Shared Memory
DMA Memory Fifo

DMA Direct Put

Figure 14: Throughput (MB/s) of MPI integer sum
allreduce on 32 nodes in Quad Mode

7. REFERENCES
[1] Open Fabrics Alliance. http://www.openfabrics.org.

[2] N. R. Adiga et al. Blue Gene/L torus interconnection
network. IBM J. Res. Dev., 49:265–276, (2005).

[3] G. Almasi et al. Design and implementation of
message-passing services for the Blue Gene/L
supercomputer. IBM J. Res. Dev., 49:393–406, (2005).

[4] M. Banikazemi, R. Govindaraju, R. Blackmore, and
D. K. Panda. MPI-LAPI: An efficient implementation
of MPI for IBM RS/6000 SP systems. IEEE
Transactions on Parallel and Distributed Systems,
12(10):1081–1093, 2001.

[5] C. Barton, C. Cascaval, S. Chatterjee, G. Almasi,
Y. Zheng, M. Farreras, and J. Amaral. Shared memory
programming for large scale machines. In Proceedings
of ACM SIGPLAN Conference on Programming
Language Design and Implementation, June 2006.

[6] DCMF. http://dcmf.anl-external.org/wiki, 2008.

[7] J. Dongarra, E. Strohmaier, H. Simon, and H. Meuer.
www.top500.org, 2007. Date retrieved: 10 Jan 2008.

[8] M. P. I. Forum. MPI-2: Extensions to the
message-passing interface, 1997. http://www.mpi-
forum.org/docs/mpi-20-html/mpi2-report.html.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. Mpich:
A high-performance, portable implementation of the
mpi message passing interface standard. Parallel
Computing, 22(6):789–828, September 1996.

[10] IBM Blue Gene Team. Overview of the Blue Gene/P
project. IBM J. Res. Dev., 52(1/2), January (2008).
http://www.research.ibm.com/journal/rd/521/team.html.

[11] L. V. Kalé, M. Bhandarkar, N. Jagathesan,
S. Krishnan, and J. Yelon. Converse: An Interoperable
Framework for Parallel Programming. In Proceedings
of the 10th International Parallel Processing
Symposium, pages 212–217, Honolulu, Hawaii, April
1996.

[12] L. V. Kale and S. Krishnan. Charm++: Parallel
Programming with Message-Driven Objects. In G. V.
Wilson and P. Lu, editors, Parallel Programming using
C++, pages 175–213. MIT Press, 1996.

[13] S. Kumar, C. Huang, G. Almasi, and L. V. Kalé.
Achieving strong scaling with NAMD on Blue Gene/L.
In Proceedings of IEEE International Parallel and
Distributed Processing Symposium 2006, April 2006.

[14] Myrinet Inc. ”Myrinet Express (MX), A High
Performance Low Level Message Passing Interface for
Myrinet”, January 2006.

[15] J. Nieplocha and B. Carpenter. ARMCI: A portable
remote memory copy library for distributed array
libraries and compiler run-time systems. Lecture Notes
in Computer Science, 1586, 1999.

[16] F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and
E. Frachtenberg. The quadrics network:
high-performance clustering technology. IEEE Micro,
22(1):46 –57, 2002.

[17] W. Gropp and E. Lusk. MPICH ADI Implementation
Reference Manual, August 1995.

